Prominent nonlinear effects in enantioselectivity were observed with a transient technique when ethyl pyruvate was hydrogenated over Pt/Al2O3 in the presence of two cinchona alkaloids, which alone afford the opposite enantiomers of ethyl lactate in excess. The changes in reaction rate and ee, detected after injection of the second alkaloid, varied strongly with type and amount of the alkaloid, and with the order of their addition to the reaction mixture. For example, under ambient conditions in acetic acid cinchonidine (CD) afforded 90% ee to (R)-ethyl lactate and addition of equimolar amount of quinidine (QD) reduced the ee to (R)-ethyl lactate only to 88%, though QD alone provided 94% ee to (S)-lactate in a slightly faster reaction. The stronger adsorption of CD on Pt in the presence of hydrogen and acetic acid was proved by UV–vis spectroscopy. The different adsorption strengths result in an enrichment of CD on the Pt surface and also in a crucial difference in the dominant adsorption geometries. CD is assumed to adsorb preferentially via the quinoline rings laying approximately parallel to the Pt surface. In this position it can interact with ethyl pyruvate during hydrogen uptake and control the enantioselectivity. The weaker adsorbing QD adopts mainly a position with the quinoline plane being tilted relative to the Pt surface and these species are not involved in the enantioselective reaction. Competing hydrogenation of the alkaloid, and steric and electronic interactions among the adsorbed species, can also influence the alkaloid efficiency and the product distribution. Hydrogenation of the quinoline rings at low alkaloid concentration resulted in unprecedented swings in the enantiomeric excess.
The enantioselective hydrogenation of 4-hydroxy-6-methyl-2-pyrone (1a), 3,6-dimethyl-4-hydroxy-2-pyrone (2a), 4-methoxy-6-methyl-2-pyrone (3a), and 4,6-dimethyl-2-pyrone (4a) was studied over a 5 wt% Pd/TiO2 catalyst. Various cinchona alkaloids and their O- and N-methyl derivatives were applied as chiral modifiers. The catalytic experiments combined with FTIR, NMR, and NOESY-NMR spectroscopic analysis and ab initio calculations revealed an interesting feature of the reactions: the ee is determined by competing reactant–modifier interactions. These interactions may involve the OH function and the quinuclidine N of the alkaloid modifier. When the reactant possesses an acidic OH group (1a and 2a), the reaction via the energetically most stable bidentate complex controls the enantioselectivity. Protic or basic solvents diminish the ee in these reactions by stabilizing a single-bonded (acid–base type) interaction. Different mechanisms are proposed for the hydrogenation of the nonacidic pyrones 3a and 4a. These models can well interpret the catalytic results but require further confirmation. Besides, the studies provided the first experimental evidence for an intrinsic rate acceleration coupled with the enantiodifferentiating process over chirally modified Pd.
  • Enantioselective hydrogenation on cinchona-modified metal catalysts: Mechanistic implication of acid additive
    W.-R. Huck, T. Bürgi, T. Mallat and A. Baiker
    Journal of Catalysis, 205 (1) (2002), p213-216
    DOI:10.1006/jcat.2001.3436 | unige:14710 | Article HTML | Article PDF
The enantioselective hydrogenation of 4-hydroxy-6-methyl-2-pyrone in the presence of acetic acid and trifluoroacetic acid has been studied on cinchonidine-modified Pd/TiO2. Catalytic experiments and theoretical calculations indicate the formation of a cinchonidine–trifluoroacetic acid cyclic ion pair. We propose that this is the actual modifier, which interacts with 4-hydroxy-6-methyl-2-pyrone in the enantiodifferentiating step. The new mechanistic model is assumed to be valid also for other reactions over cinchona-modified Pt or Pd, in the presence of trifluoroacetic acid.
  • Asymmetric hydrogenation of 4-hydroxy-6-methyl-2-pyrone: Role of acid-base interactions in the mechanism of enantiodifferentiation
    W.-R. Huck, T. Bürgi, T. Mallat and A. Baiker
    Journal of Catalysis, 200 (1) (2001), p171-180
    DOI:10.1006/jcat.2001.3205 | unige:14709 | Abstract | Article PDF
Enantioselective hydrogenation of the pseudo-aromatic 4-hydroxy-6-methyl-2-pyrone to the corresponding 5,6-dihydropyrone has been studied over cinchonidine-modified Pd/Al2O3 and Pd/TiO2 catalysts. A mechanistic model for enantiodifferentiation is proposed, involving two H-bond interactions (N–H···O and O–H···O) between the deprotonated reactant and the protonated chiral modifier. The model can rationalize (i) the sense of enantiodifferentiation, i.e., the formation of (S)-product in the presence of cinchonidine as modifier; (ii) the complete loss of enantioselectivity when the acidic OH group of the reactant is deprotonated by a base stronger than the quinuclidine N of the alkaloid; and (iii) the poor enantiomeric excesses obtained in good H-bond donor or acceptor solvents. NMR and FTIR investigations, and ab initio calculations, of reactant–modifier interactions support the suggested model. Several factors, such as catalyst prereduction conditions, trace amounts of water, presence of strong bases and acids, and competing hydrogenation of acetonitrile to ethylamines, were found to affect the efficiency of this catalytic system.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 13 2018